skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yonce, J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Renewable energy generation sources (RESs) are gaining increased popularity due to global efforts to reduce carbon emissions and mitigate effects of climate change. Planning and managing increasing levels of RESs, specifically solar photovoltaic (PV) generation sources is becoming increasingly challenging. Estimations of solar PV power generations provide situational awareness in distribution system operations. A digital twin (DT) can replicate PV plant behaviors and characteristics in a virtual platform, providing realistic solar PV estimations. Furthermore, neural networks, a popular paradigm of artificial intelligence may be used to adequately learn and replicate the relationship between input and output variables for data-driven DTs (DD-DTs). In this paper, DD-DTs are developed for Clemson University’s 1 MW solar PV plant located in South Carolina, USA to perform realistic solar PV power estimations. The DD-DTs are implemented utilizing multilayer perceptron (MLP) and Elman neural networks. Typical practical results for two DD-DT architectures are presented and validated. 
    more » « less